Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.545
Filtrar
1.
Nat Commun ; 15(1): 3016, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589367

RESUMO

Myelodysplastic syndromes (MDS) with mutated SF3B1 gene present features including a favourable outcome distinct from MDS with mutations in other splicing factor genes SRSF2 or U2AF1. Molecular bases of these divergences are poorly understood. Here we find that SF3B1-mutated MDS show reduced R-loop formation predominating in gene bodies associated with intron retention reduction, not found in U2AF1- or SRSF2-mutated MDS. Compared to erythroblasts from SRSF2- or U2AF1-mutated patients, SF3B1-mutated erythroblasts exhibit augmented DNA synthesis, accelerated replication forks, and single-stranded DNA exposure upon differentiation. Importantly, histone deacetylase inhibition using vorinostat restores R-loop formation, slows down DNA replication forks and improves SF3B1-mutated erythroblast differentiation. In conclusion, loss of R-loops with associated DNA replication stress represents a hallmark of SF3B1-mutated MDS ineffective erythropoiesis, which could be used as a therapeutic target.


Assuntos
Síndromes Mielodisplásicas , Estruturas R-Loop , Humanos , Fator de Processamento U2AF/genética , Fatores de Processamento de Serina-Arginina/genética , Fatores de Processamento de RNA/genética , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/genética , Mutação , Fatores de Transcrição/genética , Fosfoproteínas/genética
2.
Front Immunol ; 15: 1374931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562930

RESUMO

Background: Clear cell renal cell carcinomas (ccRCCs) epitomize the most formidable clinical subtype among renal neoplasms. While the impact of tumor-associated fibroblasts on ccRCC progression is duly acknowledged, a paucity of literature exists elucidating the intricate mechanisms and signaling pathways operative at the individual cellular level. Methods: Employing single-cell transcriptomic analysis, we meticulously curated UMAP profiles spanning substantial ccRCC populations, delving into the composition and intrinsic signaling pathways of these cohorts. Additionally, Myofibroblasts were fastidiously categorized into discrete subpopulations, with a thorough elucidation of the temporal trajectory relationships between these subpopulations. We further probed the cellular interaction pathways connecting pivotal subpopulations with tumors. Our endeavor also encompassed the identification of prognostic genes associated with these subpopulations through Bulk RNA-seq, subsequently validated through empirical experimentation. Results: A notable escalation in the nFeature and nCount of Myofibroblasts and EPCs within ccRCCs was observed, notably enriched in oxidation-related pathways. This phenomenon is postulated to be closely associated with the heightened metabolic activities of Myofibroblasts and EPCs. The Myofibroblasts subpopulation, denoted as C3 HMGA1+ Myofibroblasts, emerges as a pivotal subset, displaying low differentiation and positioning itself at the terminal point of the temporal trajectory. Intriguingly, these cells exhibit a high degree of interaction with tumor cells through the MPZ signaling pathway network, suggesting that Myofibroblasts may facilitate tumor progression via this pathway. Prognostic genes associated with C3 were identified, among which TUBB3 is implicated in potential resistance to tumor recurrence. Finally, experimental validation revealed that the knockout of the key gene within the MPZ pathway, MPZL1, can inhibit tumor activity, proliferation, invasion, and migration capabilities. Conclusion: This investigation delves into the intricate mechanisms and interaction pathways between Myofibroblasts and ccRCCs at the single-cell level. We propose that targeting MPZL1 and the oxidative phosphorylation pathway could serve as potential key targets for treating the progression and recurrence of ccRCC. This discovery paves the way for new directions in the treatment and prognosis diagnosis of ccRCC in the future.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Carcinoma de Células Renais/patologia , Miofibroblastos/metabolismo , Recidiva Local de Neoplasia , Neoplasias Renais/patologia , Perfilação da Expressão Gênica , Fosfoproteínas/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
3.
Nat Commun ; 15(1): 2819, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561338

RESUMO

Previous genetic studies of venous thromboembolism (VTE) have been largely limited to common variants, leaving the genetic determinants relatively incomplete. We performed an exome-wide association study of VTE among 14,723 cases and 334,315 controls. Fourteen known and four novel genes (SRSF6, PHPT1, CGN, and MAP3K2) were identified through protein-coding variants, with broad replication in the FinnGen cohort. Most genes we discovered exhibited the potential to predict future VTE events in longitudinal analysis. Notably, we provide evidence for the additive contribution of rare coding variants to known genome-wide polygenic risk in shaping VTE risk. The identified genes were enriched in pathways affecting coagulation and platelet activation, along with liver-specific expression. The pleiotropic effects of these genes indicated the potential involvement of coagulation factors, blood cell traits, liver function, and immunometabolic processes in VTE pathogenesis. In conclusion, our study unveils the valuable contribution of protein-coding variants in VTE etiology and sheds new light on its risk stratification.


Assuntos
Tromboembolia Venosa , Humanos , Tromboembolia Venosa/genética , Fatores de Risco , Fatores de Coagulação Sanguínea/genética , Exoma , Estudo de Associação Genômica Ampla , Fatores de Processamento de Serina-Arginina/genética , Fosfoproteínas/genética
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542298

RESUMO

Genetic variants in the protein-coding regions of APOL1 are associated with an increased risk and progression of chronic kidney disease (CKD) in African Americans. Hypoxia exacerbates CKD progression by stabilizing HIF-1α, which induces APOL1 transcription in kidney podocytes. However, the contribution of additional mediators to regulating APOL1 expression under hypoxia in podocytes is unknown. Here, we report that a transient accumulation of HIF-1α in hypoxia is sufficient to upregulate APOL1 expression in podocytes through a cGAS/STING/IRF3-independent pathway. Notably, IFI16 ablation impedes hypoxia-driven APOL1 expression despite the nuclear accumulation of HIF-1α. Co-immunoprecipitation assays indicate no direct interaction between IFI16 and HIF-1α. Our studies identify hypoxia response elements (HREs) in the APOL1 gene enhancer/promoter region, showing increased HIF-1α binding to HREs located in the APOL1 gene enhancer. Luciferase reporter assays confirm the role of these HREs in transcriptional activation. Chromatin immunoprecipitation (ChIP)-qPCR assays demonstrate that IFI16 is not recruited to HREs, and IFI16 deletion reduces HIF-1α binding to APOL1 HREs. RT-qPCR analysis indicates that IFI16 selectively affects APOL1 expression, with a negligible impact on other hypoxia-responsive genes in podocytes. These findings highlight the unique contribution of IFI16 to hypoxia-driven APOL1 gene expression and suggest alternative IFI16-dependent mechanisms regulating APOL1 gene expression under hypoxic conditions.


Assuntos
Podócitos , Insuficiência Renal Crônica , Humanos , Apolipoproteína L1/genética , Apolipoproteína L1/metabolismo , Hipóxia Celular/genética , Imunoprecipitação da Cromatina , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Podócitos/metabolismo , Insuficiência Renal Crônica/metabolismo
5.
Chin J Dent Res ; 27(1): 17-28, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38546516

RESUMO

The dentine sialophosphoprotein (DSPP) gene is the only identified causative gene for dentinogenesis imperfecta type 2 (DGI-II), dentinogenesis imperfecta type 3 (DGI-III) and dentine dysplasia type 2 (DD-II). These three disorders may have similar molecular mechanisms involved in bridging the DSPP mutations and the resulting abnormal dentine mineralisation. The DSPP encoding proteins DSP (dentine sialoprotein) and DPP (dentine phosphoprotein) are positive regulators of dentine formation and perform a function during dentinogenesis. The present review focused on the recent findings and viewpoints regarding the relationship between DSPP and dentinogenesis as well as mineralisation from multiple perspectives, involving studies relating to spatial structure and tissue localisation of DSPP, DSP and DPP, the biochemical characteristics and biological function of these molecules, and the causative role of the proteins in phenotypes of the knockout mouse model and in hereditary dentine defects.


Assuntos
Calcinose , Dentinogênese Imperfeita , Fosfoproteínas , Sialoglicoproteínas , Animais , Camundongos , Calcificação Fisiológica , Dentina , Dentinogênese Imperfeita/genética , Modelos Animais de Doenças , Camundongos Knockout , Humanos , Sialoglicoproteínas/genética , Fosfoproteínas/genética
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(3): 322-325, 2024 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-38448022

RESUMO

OBJECTIVE: To explore the genetic etiology for a Chinese pedigree affected with Treacher-Collins syndrome (TCS) through whole exome sequencing (WES). METHODS: A TCS pedigree which was diagnosed at the Women and Children's Hospital Affiliated to Qingdao University on February 5, 2020 was selected as the study subject. Following collection of clinical data, WES was carried out. Candidate variant was validated through Sanger sequencing and bioinformatic analysis. RESULTS: The WES results showed that the proband has harbored a heterozygous c.3337C>T variant of the TCOF1 gene, and Sanger sequencing confirmed that his mother and brother also carried the same variant. Based on guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted as pathogenic (PVS1+PM2_Supporting+PP4). CONCLUSION: The heterozygous c.3337C>T variant of the TCOF1 gene probably underlay the pathogenesis of TCS in this pedigree.


Assuntos
Povo Asiático , Disostose Mandibulofacial , Criança , Feminino , Humanos , Masculino , Povo Asiático/genética , China , Sequenciamento do Exoma , Disostose Mandibulofacial/genética , Mães , Proteínas Nucleares/genética , Linhagem , Fosfoproteínas/genética
7.
Sci Rep ; 14(1): 6873, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519482

RESUMO

Three quarters of all breast cancers express the estrogen receptor (ER, ESR1 gene), which promotes tumor growth and constitutes a direct target for endocrine therapies. ESR1 mutations have been implicated in therapy resistance in metastatic breast cancer, in particular to aromatase inhibitors. ESR1 mutations promote constitutive ER activity and affect other signaling pathways, allowing cancer cells to proliferate by employing mechanisms within and without direct regulation by the ER. Although subjected to extensive genetic and transcriptomic analyses, understanding of protein alterations remains poorly investigated. Towards this, we employed an integrated mass spectrometry based proteomic approach to profile the protein and phosphoprotein differences in breast cancer cell lines expressing the frequent Y537N and Y537S ER mutations. Global proteome analysis revealed enrichment of mitotic and immune signaling pathways in ER mutant cells, while phosphoprotein analysis evidenced enriched activity of proliferation associated kinases, in particular CDKs and mTOR. Integration of protein expression and phosphorylation data revealed pathway-dependent discrepancies (motility vs proliferation) that were observed at varying degrees across mutant and wt ER cells. Additionally, protein expression and phosphorylation patterns, while under different regulation, still recapitulated the estrogen-independent phenotype of ER mutant cells. Our study is the first proteome-centric characterization of ESR1 mutant models, out of which we confirm estrogen independence of ER mutants and reveal the enrichment of immune signaling pathways at the proteomic level.


Assuntos
Neoplasias da Mama , Quinases Ciclina-Dependentes , Humanos , Feminino , Quinases Ciclina-Dependentes/genética , Proteoma/genética , Proteômica , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Neoplasias da Mama/patologia , Mutação , Estrogênios , Receptores de Estrogênio/genética , Fosfoproteínas/genética
8.
J Cell Mol Med ; 28(7): e18205, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506089

RESUMO

Retinoic acid (RA), a vitamin A derivative, is an effective cell differentiating factor which plays critical roles in neuronal differentiation induction and the production of neurotransmitters in neurons. However, the specific changes in phosphorylation levels and downstream signalling pathways associated with RA remain unclear. This study employed qualitative and quantitative phosphoproteomics approaches based on mass spectrometry to investigate the phosphorylation changes induced by RA in C17.2 neural stem cells (NSCs). Dimethyl labelling, in conjunction with TiO2 phosphopeptide enrichment, was utilized to profile the phosphoproteome of self-renewing and RA-induced differentiated cells in C17.2 NSCs. The results of our study revealed that, qualitatively, 230 and 14 phosphoproteins were exclusively identified in the self-renewal and RA-induced groups respectively. Quantitatively, we successfully identified and quantified 177 unique phosphoproteins, among which 70 exhibited differential phosphorylation levels. Analysis of conserved phosphorylation motifs demonstrated enrichment of motifs corresponding to cyclin-dependent kinase and MAPK in the RA-induced group. Additionally, through a comprehensive literature and database survey, we found that the differentially expressed proteins were associated with the Wnt/ß-catenin and Hippo signalling pathways. This work sheds light on the changes in phosphorylation levels induced by RA in C17.2 NSCs, thereby expanding our understanding of the molecular mechanisms underlying RA-induced neuronal differentiation.


Assuntos
Células-Tronco Neurais , Tretinoína , Tretinoína/farmacologia , Tretinoína/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Diferenciação Celular , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
9.
Mol Cell ; 84(8): 1475-1495.e18, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38521065

RESUMO

Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.


Assuntos
Cromatina , Neoplasias , Animais , Humanos , Camundongos , Cromatina/genética , Mutação , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Splicing de RNA/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
10.
Mol Genet Genomic Med ; 12(3): e2405, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38444283

RESUMO

BACKGROUND: Treacher Collins Ι syndrome (TCS1, OMIM:154500) is an autosomal dominant disease with a series of clinical manifestations such as craniofacial dysplasia including eye and ear abnormalities, small jaw deformity, cleft lip, as well as repeated respiratory tract infection and conductive hearing loss. Two cases of Treacher Collins syndrome with TCOF1(OMIM:606847) gene variations were reported in the article, with clinical characteristics, gene variants and the etiology. METHODS: The clinical data of two patients with Treacher Collins syndrome caused by TCOF1 gene variation were retrospectively analyzed. The whole exome sequencing (WES) was performed to detect the pathogenic variants of TCOF1 gene in the patients, and the verification of variants were confirmed by Sanger sequencing. RESULTS: Proband 1 presented with bilateral craniofacial deformities, conductive hearing loss and recurrent respiratory tract infection. Proband 2 showed bilateral craniofacial malformations with cleft palate, which harbored similar manifestations in her family. She died soon after birth due to dyspnea and feeding difficulties. WES identified two novel pathogenic variants of TCOF1 gene in two probands, each with one variant. According to the American College of Medical Genetics and Genomics, the heterozygous variation NM_001371623.1: c.877del (p. Ala293Profs*34) of TCOF1 gene was detected in Proband 1, which was evaluated as a likely pathogenic (LP) and de novo variant. Another variant found in Proband 2 was NM_001135243.1: c.1660_1661del (p. D554Qfs*3) heterozygous variation, which was evaluated as a pathogenic variation and the variant inherited from the mother. To date, the two variants have not been reported before. CONCLUSION: Our study found two novel pathogenic variants of TCOF1 gene and clarified the etiology of Treacher Collins syndrome. We also enriched the phenotypic spectrum of Treacher Collins syndrome and TCOF1 gene variation spectrum in the Chinese population, and provided the basis for clinical diagnosis, treatment and genetic counseling.


Assuntos
Disostose Mandibulofacial , Infecções Respiratórias , Feminino , Humanos , China , Perda Auditiva Condutiva , Disostose Mandibulofacial/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Estudos Retrospectivos
11.
BMC Med Genomics ; 17(1): 75, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500116

RESUMO

BACKGROUND: Treacher Collins syndrome (TCS; OMIM 154500) is a craniofacial developmental disorder. METHODS: To investigate the genetic features of a four-generation Chinese family with TCS, clinical examinations, hearing tests, computed tomography, whole-exome sequencing (WES), Sanger sequencing, reverse transcription (RT)-PCR, and the Minigene assay were performed. RESULTS: The probands, an 11-year-old male and his cousin exhibited typical clinical manifestations of TCS including conductive hearing loss, downward slanting palpebral fissures, and mandibular hypoplasia. Computed tomography revealed bilateral fusion of the anterior and posterior stapedial crura and malformation of the long crura of the incus. WES of both patients revealed a novel heterozygous intronic variant, i.e., c.4342 + 5_4342 + 8delGTGA (NM_001371623.1) in TCOF1. Minigene expression analysis revealed that the c.4342 + 5_4342 + 8delGTGA variant in TCOF1 caused a partial deletion of exon 24 (c.4115_4342del: p.Gly1373_Arg1448del), which was predicted to yield a truncated protein. The deletion was further confirmed via RT-PCR and sequencing of DNA from proband blood cells. A heterozygous variant in the POLR1C gene (NM_203290; exon6; c.525delG) was found almost co-segregated with the TCOF1 pathogenic variant. CONCLUSIONS: In conclusion, we identified a heterozygous TCOF1 splicing variant c.4342 + 5_4342 + 8delGTGA (splicing) in a Chinese TSC family with ossicular chain malformations and facial anomalies. Our findings broadened the spectrum of TCS variants and will facilitate diagnostics and prognostic predictions.


Assuntos
Disostose Mandibulofacial , Masculino , Humanos , Criança , Disostose Mandibulofacial/genética , Mutação , Éxons , Íntrons , China , Proteínas Nucleares/genética , Fosfoproteínas/genética
12.
Clin Endocrinol (Oxf) ; 100(5): 431-440, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38368602

RESUMO

OBJECTIVE: Lipoid congenital adrenal hyperplasia (LCAH) is caused by mutations in STAR. A systematic review of phenotype-genotype correlation and data on testicular histology in LCAH patients is unavailable. We aim to describe our experience and provide phenotype-genotype correlation. DESIGN, PATIENTS AND MEASUREMENTS: Retrospective review of three genetically proven LCAH patients from our centre and per-patient data analysis from a systematic review of 292 probands. The phenotypic subgroups of 46,XY were Group A (typical female genitalia), Group B (atypical genitalia) and Group C (typical male genitalia). RESULTS: We report three new LCAH probands from India, all diagnosed post-infancy with preserved gonadal function and one novel variant. The systematic review reports 46,XY to 46,XX LCAH ratio of 1.1 (155:140). Patients with 46,XY LCAH in Group A were diagnosed in infancy (116/117) and had higher mineralocorticoid involvement than Group C (96.4% vs. 75%, p = 0.035), whereas Group C had preserved gonadal function. Hyperplastic adrenals are noted in ~60% of LCAH diagnosed with primary adrenal insufficiency in infancy. There was no report of gonadal germ cell cancer and rare reports of germ cell neoplasia in situ in adolescents, especially with intraabdominal gonads. Two-thirds of LCAH probands were East-Asian and 11/16 regional recurrent variants were from East Asia. There was minimal overlap between variants in Groups A (n = 55), B (n = 9) and C (n = 8). All nonsense and frameshift and most of the splice-site variants and deletion/insertions were present in Group A. CONCLUSIONS: We report three new cases of LCAH from India. We propose a phenotype-derived genotypic classification of reported STAR variants in 46,XY LCAH.


Assuntos
Hiperplasia Suprarrenal Congênita , Transtorno 46,XY do Desenvolvimento Sexual , Adolescente , Humanos , Masculino , Feminino , Hiperplasia Suprarrenal Congênita/diagnóstico , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fenótipo , Genótipo
13.
Proteomics ; 24(9): e2300309, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38334196

RESUMO

The CD117 mast/stem cell growth factor receptor tyrosine kinase (KIT) is critical for haematopoiesis, melanogenesis and stem cell maintenance. KIT is commonly activated by mutation in cancers including acute myeloid leukaemia, melanoma and gastrointestinal stromal tumours (GISTs). The kinase and the juxtamembrane domains of KIT are mutation hotspots; with the kinase domain mutation D816V common in leukaemia and the juxtamembrane domain mutation V560G common in GISTs. Given the importance of mutant KIT signalling in cancer, we have conducted a proteomic and phosphoproteomic analysis of myeloid progenitor cells expressing D816V- and V560G-KIT mutants, using an FDCP1 isogenic cell line model. Proteomic analysis revealed increased abundance of proteases and growth signalling proteins in KIT-mutant cells compared to empty vector (EV) controls. Pathway analysis identified increased oxidative phosphorylation in D816V- and V560G-mutant KIT cells, which was targetable using the inhibitor IACS010759. Dysregulation of RNA metabolism and cytoskeleton/adhesion pathways was identified in both the proteome and phosphoproteome of KIT-mutant cells. Phosphoproteome analysis further revealed active kinases such as EGFR, ERK and PKC, which were targetable using pharmacological inhibitors. This study provides a pharmaco-phosphoproteomic profile of D816V- and V560G-mutant KIT cells, which reveals novel therapeutic strategies that may be applicable to a range of cancers.


Assuntos
Mutação , Proteômica , Proteínas Proto-Oncogênicas c-kit , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Humanos , Proteômica/métodos , Linhagem Celular Tumoral , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transdução de Sinais/genética , Fosforilação , Proteoma/genética , Proteoma/metabolismo , Proteoma/análise
14.
Planta ; 259(3): 56, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38305934

RESUMO

MAIN CONCLUSION: After blue-light exposure, ubiquitination of PHOTOTROPIN1 lysine 526 enhances phototropic responses. Arabidopsis blue-light photoreceptor, PHOTOTROPIN1 (PHOT1) mediates a series of blue-light responses that function to optimize photosynthesis efficiency. Blue-light sensing through the N-terminal sensory domain activates the C-terminal kinase activity of PHOT1, resulting in autophosphorylation. In addition to phosphorylation, PHOT1 lysine residue 526 (Lys526), after blue-light exposure, was found to carry a double glycine attachment, indicative of a possible ubiquitination modification. The functionality of PHOT1 Lys526 was investigated by reverse genetic approaches. Arginine replacements of PHOT1 Lys526, together with Lys527, complemented phot1-5 phot2-1 double mutant with attenuated phototropic bending, while blue-light responses: leaf expansion and stomatal opening, were restored to wild type levels. Transgenic seedlings were not different in protein levels of phot1 Lys526 527Arg than the wild type control, suggesting the reduced phototropic responses was not caused by reduction in protein levels. Treating the transformants with proteosome inhibitor, MG132, did not restore phototropic sensitivity. Both transgenic protein and wild type PHOT1 also had similar dark recovery of kinase activity, suggesting that phot1 Lys526 527Arg replacement did not affect the protein stability to cause the phenotype. Together, our results indicate that blocking Lys526 ubiquitination by arginine substitution may have caused the reduced phototropic phenotype. Therefore, the putative ubiquitination on Lys526 functions to enhance PHOT1-mediated phototropism, rather than targeting PHOT1 for proteolysis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Fototropismo , Proteínas Serina-Treonina Quinases , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arginina , Luz , Lisina/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Plantas Geneticamente Modificadas/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo
15.
Sci Rep ; 14(1): 4237, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38378793

RESUMO

Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.


Assuntos
Fator de Iniciação 4E em Eucariotos , MicroRNAs , Humanos , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Células HEK293 , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
16.
Trends Cancer ; 10(3): 177-179, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355355

RESUMO

Mammalian cells react to the accumulation of double-stranded (ds)DNA in the cytosol by secreting antiviral and proinflammatory cytokines, notably type I interferon (IFN). Recent data reported by Tani et al. demonstrate that overactivation of this pathway is prevented by an adaptive feedback mechanism elicited by type I IFN receptors and executed by the exonuclease three prime repair exonuclease 1 (TREX1).


Assuntos
Citocinas , Exodesoxirribonucleases , Fosfoproteínas , Animais , DNA , Mamíferos/genética , Mamíferos/metabolismo , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
17.
Cancer Lett ; 585: 216667, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38280479

RESUMO

The activation of YAP/TAZ, a pair of paralogs of transcriptional coactivators, initiates a dysregulated transcription program, which is a key feature of human cancer cells. However, it is not fully understood how YAP/TAZ promote dysregulated transcription for tumor progression. In this study, we employed the BioID method to identify the interactome of YAP/TAZ and discovered that YAP/TAZ interact with multiple components of SRCAP complex, a finding that was further validated through endogenous and exogenous co-immunoprecipitation, as well as immunofluorescence experiments. CUT&Tag analysis revealed that SRCAP complex facilitates the deposition of histone variant H2A.Z at target promoters. The depletion of SRCAP complex resulted in a decrease in H2A.Z occupancy and the oncogenic transcription of YAP/TAZ target genes. Additionally, the blockade of SRCAP complex suppressed YAP-driven tumor growth. In a genetically engineered lung adenocarcinoma mouse model and non-small cell lung cancer patients, SRCAP complex and H2A.Z deposition were found to be upregulated. This upregulation was statistically correlated with YAP expression, pathological stages, and poor survival in lung cancer patients. Together, our study uncovers that SRCAP complex plays a critical role in YAP/TAZ oncogenic transcription by coordinating H2A.Z deposition during cancer progression, providing potential targets for cancer diagnosis and prevention.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Neoplasias Pulmonares/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Transdução de Sinais/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Sinalização YAP , Histonas/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Adenosina Trifosfatases/metabolismo
18.
Cell ; 187(3): 642-658.e19, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218188

RESUMO

Despite advances in defining diverse somatic mutations that cause myeloid malignancies, a significant heritable component for these cancers remains largely unexplained. Here, we perform rare variant association studies in a large population cohort to identify inherited predisposition genes for these blood cancers. CTR9, which encodes a key component of the PAF1 transcription elongation complex, is among the significant genes identified. The risk variants found in the cases cause loss of function and result in a ∼10-fold increased odds of acquiring a myeloid malignancy. Partial CTR9 loss of function expands human hematopoietic stem cells (HSCs) by increased super elongation complex-mediated transcriptional activity, which thereby increases the expression of key regulators of HSC self-renewal. By following up on insights from a human genetic study examining inherited predisposition to the myeloid malignancies, we define a previously unknown antagonistic interaction between the PAF1 and super elongation complexes. These insights could enable targeted approaches for blood cancer prevention.


Assuntos
Neoplasias Hematológicas , Fosfoproteínas , Elongação da Transcrição Genética , Fatores de Transcrição , Humanos , Neoplasias Hematológicas/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , Fosfoproteínas/genética
19.
Cell Rep ; 43(1): 113637, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38175749

RESUMO

TREX2, a 3'-5' exonuclease, is a part of the DNA damage tolerance (DDT) pathway that stabilizes replication forks (RFs) by ubiquitinating PCNA along with the ubiquitin E3 ligase RAD18 and other DDT factors. Mismatch repair (MMR) corrects DNA polymerase errors, including base mismatches and slippage. Here we demonstrate that TREX2 deletion reduces mutations in cells upon exposure to genotoxins, including those that cause base lesions and DNA polymerase slippage. Importantly, we show that TREX2 generates most of the spontaneous mutations in MMR-mutant cells derived from mice and people. TREX2-induced mutagenesis is dependent on the nuclease and DNA-binding attributes of TREX2. RAD18 deletion also reduces spontaneous mutations in MMR-mutant cells, albeit to a lesser degree. Inactivation of both MMR and TREX2 additively increases RF stalls, while it decreases DNA breaks, consistent with a synthetic phenotype.


Assuntos
DNA Polimerase Dirigida por DNA , Mutagênicos , Humanos , Camundongos , Animais , Mutagênese , DNA Polimerase Dirigida por DNA/metabolismo , Mutação , Ubiquitina/metabolismo , Replicação do DNA , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Fosfoproteínas/genética , Proteínas de Ligação a DNA/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
20.
Cardiovasc Res ; 120(3): 237-248, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38214891

RESUMO

The function of perilipin 1 in human metabolism was recently highlighted by the description of PLIN1 variants associated with various pathologies. These include severe familial partial lipodystrophy and early onset acute coronary syndrome. Additionally, certain variants have been reported to have a protective effect on cardiovascular diseases. The role of this protein remains controversial in mice and variant interpretation in humans is still conflicting. This literature review has two primary objectives (i) to clarify the function of the PLIN1 gene in lipid metabolism and atherosclerosis by examining functional studies performed in cells (adipocytes) and mice and (ii) to understand the impact of PLIN1 variants identified in humans based on the variant's location within the protein and the type of variant (missense or frameshift). To achieve these objectives, we conducted an extensive analysis of the relevant literature on perilipin 1, its function in cellular models and mice, and the consequences of its mutations in humans. We also utilized bioinformatics tools and consulted the Human Genetics Cardiovascular Disease Knowledge Portal to enhance the pathogenicity assessment of PLIN1 missense variants.


Assuntos
Aterosclerose , Lipodistrofia Parcial Familiar , Animais , Humanos , Camundongos , Aterosclerose/genética , Metabolismo dos Lipídeos/genética , Lipodistrofia Parcial Familiar/genética , Mutação , Perilipina-1/genética , Perilipina-1/metabolismo , Perilipina-2/genética , Perilipina-2/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA